Druzya.org
Возьмемся за руки, Друзья...
 
 
Наши Друзья

Александр Градский
Мемориальный сайт Дольфи. 
				  Светлой памяти детей,
				  погибших  1 июня 2001 года, 
				  а также всем жертвам теракта возле 
				 Тель-Авивского Дельфинариума посвящается...

 
liveinternet.ru: показано количество просмотров и посетителей

Библиотека :: Конфликтология :: В.А. Лефевр :: В.А. Лефевр - Конфликтующие структуры
<<-[Весь Текст]
Страница: из 57
 <<-
 
    Заметим, что в построенном исчислении не будет справедлива теорема о 
единственности разложения на неприводимые множители. Например, многочлен 
w=l+x+x2+xз представим двумя следующими способами: w=(1.+x)з==(1+x) (1+х2).
    Конечно, подобное «восстановление истории» имеет смысл лишь в рамках данной 
модели со всеми принятыми ограничениями, самым существенным, из которых 
является то, что аналогом осознания выступает некоторый множитель.
    Ниже будет показано, что мыслимы другие механизмы развертывания многочленов.
 Изложенный здесь способ «восстановления истории», представляет coбой частный и 
простейший случай.
    Различные истолкования манипуляций с рефлексивными многочленами
   Рассмотрим многочлен Q=T+Tx+Tx2+Txз. Формально мы можем его привести к виду
    Q=Tw=T(1+х)3.
   Многочлен в развернутой форме, фиксирующий состояние системы, 
«приравнивается» к записи процесса  своего формирования с позиции внешнего 
исследователя.
   Этот же многочлен может быть изображен двумя другими способами:
    T+[T+Tx+Tx2]x=T+[T(1+x)2]x.
    Теперь в положение внешнего исследователя поставлен персонаж X. Мы можем 
истолковывать «содержимое» его внутреннего мира двояко. В левой части перед ним 
лежит состояние системы, а в правой фиксируется динамика формирования состояния.
 Наконец, различие в записи может быть объяснено удобством рассмотрения системы 
внешним исследователем. В этом случае запись
    Q=T+[T(1+x)2]x
    будет фиксировать лишь «свертку» лежащего перед персонажем Х развернутого 
состояния, проделанную внешним исследователем.
   Персонажи не владеют рефлексивным анализом. Поэтому, когда мы приписываем 
персонажу внутренний мир, представленный в виде многочлена, возникает опасность,
 что мы заставим его созерцать особенности нашего искусственного аппарата, а не 
то содержание, которое мы хотели бы 'выразить посредством нашей символики. 
Рассмотрим в этой связи многочлен
    Q=T+[T(1+x)n]x.
    Как мы можем истолковать букву n ? Если мы скажем, что п—некоторое 
фиксированное число, то запись нужно понимать в соответствии с комментарием, 
приведенным выше.
   Ну, а если п - это «любое число» с позиции X? Что это означает? Ведь 
бессмысленно утверждать, что персонажу известен закон формирования многочлена, 
персонажу может быть известен некоторый принцип, который фиксируется 
исследователем с помощью символа п. В данном примере естественно предположить, 
что такая запись означает: персонаж вскрыл рекурсивный принцип формирования 
состояний, в которых он может находиться.
   А как предстает эта ситуация с позиции внешнего исследователя, 'владеющего 
языком многочленов? Отразив персонажа X, он на своем языке должен зафиксировать,
 что п—буквенная переменная с позиции персонажа (!). Может ли они дальше 
пользоваться формальными принципами исчисления? Ведь произведя нехитрые 
преобразования, он получит                      
   T+[T(1+x)n]x=T(1+x)m, т=п+1,
    где т—любое целое, но уже с позиции внешнего исследователя. Не выплеснул ли 
он при этом преобразовании тот факт, что Х вскрыл принцип? Ведь запись
    Q=T(1+x)m
    означает, что персонаж таков, что оператор w=l+x может употребляться подряд 
произвольное число раз и только.
   Да, он выплеснул факт, что принцип вскрыт. Но он может выйти из положения, 
введя дополнительную аксиому, что персонаж Х владеет принципом индукции, 
который позволяет ему вскрыть принцип своего рекурсивного устройства.
   При любом фиксированном m многочлен может быть представлен таким образом: 
    Q=T(1+x)m={T+Ei=2m) T(1+x)i-1}x=T+[T+Q1+Q2+...+Qm-1]
    где Q1,Q2,...,Qm-1 - последовательность состояний, в которых находился 
персонаж X.
    Аксиома «позволяет» персонажу провести анализ своей «истории», но 
представимость состояний, необходимых для такого анализа, обеспечивается 
формальным аппаратом. Использование аксиомы, приписывающей персонажу Х 
«обладание» принципом индукции, является определенной уступкой обыденным 
способам рассуждений. Допустимо иное рассуждение: равенство
    			T+[T(1+x)n]x=T(1+x)m
    справедливо уже только потому, что такова алгебраическая природа 
рассматриваемых нами процессов. Таким образом, возможность получения 
обобщенного портрета самого себя не требует с необходимостью принципа индукции. 
Сам принцип индукции в этом случае может рассматриваться как проявление работы 
«глубинных» алгебраических процессов.
    Аналогичные рассуждения будут справедливы и для ситуации
    Q=T(1+x+y}m,
    T(1+x+y)m==T+[T(1+x+y/)m-1]x+[T(1+x+y)m-1]y=T+[T(1+x+y)n]x+[T(1+x+y)n]y.
    Таким образом, каждый персонаж может адекватно отразить не только себя 
самого, но и систему, элементом которой он является.
   Выявление принципа или, на языке внешнего исследователя, использующего 
данный аппарат,—оператора осознания и способа его работы, не приводит к смене 
этого оператора осознания. Он и дальше продолжает работать автоматически.
   Представим себе, что персонаж, имеющий оператор w=1+x+yx, вскрыл принцип 
мажорирования, не тот факт, что данное состояние мажорируется, а именно 
 
<<-[Весь Текст]
Страница: из 57
 <<-