Druzya.org
Возьмемся за руки, Друзья...
 
 
Наши Друзья

Александр Градский
Мемориальный сайт Дольфи. 
				  Светлой памяти детей,
				  погибших  1 июня 2001 года, 
				  а также всем жертвам теракта возле 
				 Тель-Авивского Дельфинариума посвящается...

 
liveinternet.ru: показано количество просмотров и посетителей

Библиотека :: Астрология :: В.В.Г . (Владимир Горбацевич) :: Владимир Горбацевич - Плацид, Кох и все, все, все системы астрологических домов.
<<-[Весь Текст]
Страница: из 83
 <<-
 
Чебышева-Граве справедлива для ряда некоторых дру­
гих классов проекций, неконформных, но эллиптического 
типа. 
Где наши астрологические Чебышевы, отзови­
тесь! Вас ждет невиданная по значимости работа в 
астрологии — построение систем домов, дающих 
минимальные искажения некоторых заданных нами 
астрологических параметров. Топоцентрическая си­
стема домов — это только первый шаг в этом направ­
лении. 
Есть еще и геодезические (используемые в геодезии, 
а не в картографии) системы проекций — в отличие от 
картографических тут особенно важна возможность точ­
ного УЧЕТА искажений (длин, углов и площадей), тогда 
как для картографических проекций важнее сама малость 
искажений. 
Интересная новая точка зрения на свойства про­
екций. Астрологам подобный подход к системам до­
мов еще неведом. 
Среди множества картографических проекций при 
выполнении топографических и геодезических работ при-
202 ПЛАЦИД, КОХ И ВСЕ, ВСЕ, ВСЕ 
меняется конформная проекция Гаусса-Крюгера, в кото­
рой углы изображаются без искажений, а линейные иска­
жения не зависят от направления, что облегчает их учет. 
Сейчас эта, еще совсем недавно известная только специ­
алистам-картографам система, получила широкое распро­
странение среди туристов, рыболовов, охотников и других 
людей, использующих систему спутникового ориентиро­
вания GPS. 
В основу построения единой системы плоских коорди­
нат для России (а также для стран СНГ) положено разделе­
ние поверхности эллипсоида (северной его части) на ряд со­
вершенно одинаковых сферических треугольников, ограни­
ченных экватором и меридианами с разностью долгот 6°. 
При съемках городов и участков территории, отводи­
мой под строительство крупных инженерных сооружений 
желательно уменьшить величины линейных искажений, 
чтобы ими можно либо пренебречь, либо просто учиты­
вать. С этой целью можно ввести местную систему коор­
динат в проекции Гаусса-Крюгера со своим (нестандарт­
ным) осевым меридианом и своими размерами зоны по 
долготе. Во всех случаях применения местных систем 
после завершения работ координаты пунктов должны быть 
пересчитаны в государственную систему плоских коор­
динат в стандартной зоне. 
Ну что ж, для начала хватит и этих сведений по 
картографии. 
После чтения сочинений по картографии в голову (по 
крайней мере, в мою) приходит множество полезнейших 
аналогий. А нет ли и других областей знания, в которых 
ставятся и решаются проблемы, аналогичные проблеме 
домификации в астрологии. Есть! 
Назову пока только одну из таких областей — это 
начертательная геометрия, где, например, весьма ак-
203 туальна задача выбора проекции одной плоскости на 
другую в пространстве. 
Пусть в пространстве расположены две плоскости, не 
параллельные друг другу. Существует много параллель­
ных проекций одной плоскости на другую. Какая из них 
"самая лучшая"? Ответ таков — нет среди них самых 
лучших, каждая проекция что-то искажает, но в чем-то 
вносит искажения. 
Еще имеются и центральные проекции — проекции 
из некоторой фиксированной точки (если эта точка удаля­
ется в бесконечность, то приходим к параллельным про­
екциям). Тут тоже всегда имеются какие-то геометричес­
кие искажения. И еще возможен вариант — суперпозиция 
(наложение, последовательное выполнение) нескольких 
проекций (центральных, параллельных), но и это не спаса­
ет ситуацию, искажения все равно остаются. Приходится 
подробно изучать те искажения, которые вносит та или 
иная проекция и выбирать для каждой конкретной задачи 
(или группы задач) подходящую проекцию. Задачу о точ­
ном соотнесении двух плоскостей в пространстве решил 
бы поворот плоскости, но он может не входить в класс 
допустимых преобразований. Как и в астрологии, тут тоже 
имеются определенные ограничения. 
204 ЗАКЛЮЧЕНИЕ 
Итак, читатель добрался-таки до конца этой книги. 
 
<<-[Весь Текст]
Страница: из 83
 <<-