| |
различия, иначе говоря, полностью осуществленное понятие. И то и другое
вместе представляет поэтому
идею.
Если более тщательно сравнить между собой положения какой-нибудь
синтетической науки, и в особенности геометрии, то обнаружится следующее
различие: одни теоремы этой науки содержат лишь отдельные отношения
предмета, другие же - такие отношения, в которых выражена исчерпывающая
определенность предмета. Весьма поверхностно рассматривать все положения как
равноценные на том основании, что-де вообще каждое из них содержит некоторую
истину и что они в формальной процедуре, в ходе доказательства одинаково
существенны. Различие, касающееся содержания теорем, самым тесным образом
связано с самой этой процедурой; некоторые дальнейшие замечания о ней
послужат к тому, чтобы больше выяснить указанное различие, равно как и
природу синтетического познания. Прежде всего [необходимо отметить
следующее]: Евклидова геометрия, которая должна служить здесь примером как
представительница синтетического метода, будучи его наиболее совершенным
образцом, издавна превозносится за порядок расположения в ней теорем -
каждой теореме предпосылаются как уже ранее доказанные те положения, которые
требуются для ее построения доказательства. Это обстоятельство касается
формальной последовательности; как ни важна такая последовательность, она
все же больше касается внешнего упорядочения сообразно цели и сама по себе
не имеет никакого отношения к существенному различию между понятием и идеей,
в котором заключается более высокий принцип необходимости движения вперед. -
А именно, в дефинициях, с которых начинают [в геометрии], постигается
чувственный предмет как непосредственно данный и определяют его по его
ближайшему роду и видовому отличию, которые также суть простые,
непосредственные определенности понятия - всеобщность и особенность, -
отношение между которыми не развертывается дальше. Начальные теоремы сами не
могут опираться ни на что другое, кроме таких непосредственных определений,
как те, чтб содержатся в дефинициях; а равно и их взаимная зависимость может
иметь прежде всего лишь то общее, что одно определение вообще определено
другим. Так, первые теоремы Евклида о треугольниках касаются лишь
конгруэнтности, т. е. вопроса о том, сколько частей должно быть определено в
треугольнике, чтобы были вообще определены и остальные части того же
треугольника, иначе говоря, весь треугольник в целом. То, что сравниваются
друг с другом два треугольника и конгруэнтность усматривают в наложении
[одного треугольника на другой ], - это уловка, в которой нуждается метод,
долженствующий пользоваться физическим наложением вместо мысленного - быть
определенным (Bestimmtsein). Помимо этого, рассматриваемые отдельно, эти
теоремы сами содержат две части, из которых одну можно считать понятием, а
другую-реальностью, тем, чтб завершает понятие, сообщая ему реальность. А
именно, то, чтб полностью определяет [треугольник] (например, две стороны и
заключенный между ними угол), есть для рассудка уже весь треугольник; для
исчерпывающей определенности треугольника ничего больше не требуется;
остальные два угла и третья сторона - это уже избыток реальности над
определенностью понятия. Поэтому результат указанных теорем, собственно
говоря, таков: они сводят чувственный треугольник, во всяком случае
нуждающийся в трех сторонах и трех углах, к [его] простейшим условиям;
дефиниция вообще упомянула лишь о трех линиях, замыкающих плоскую фигуру
и делающих ее треугольником; лишь теорема выражает то, что углы определены
определенностью сторон, равно как другие теоремы указывают на зависимость
других трех частей треугольника от трех упомянутых частей. - Исчерпывающую
определенность величины треугольника по его сторонам внутри его самого
содержит Пифагорова теорема; лишь она есть уравнение сторон треугольника,
тогда как предшествующие теоремы 72 доходят лишь вообще до установления
определенности его частей по отношению друг к другу, а не до уравнения. Вот
почему эта теорема есть совершенная, реальная дефиниция треугольника, а
именно прежде всего прямоугольного треугольника, наиболее простого в своих
различиях и потому наиболее правильного. - Этой теоремой Евклид заканчивает
первую книгу, так как теорема и в самом деле есть достигнутая совершенная
определенность. Подобным же образом Евклид, после того как он предварительно
свел к чему-то равномерному 73 отягощенные большим неравенством
непрямоугольные треугольники, заканчивает свою вторую книгу сведением
прямоугольника к квадрату, - уравнением между равным самому себе (квадратом)
и неравным внутри себя (прямоугольником); точно так же и гипотенуза,
соответствующая прямому углу, [т. е. ] тому, что равно самому себе,
составляет в Пифагоровой теореме одну сторону уравнения, а другую сторону
образует неравное себе, а именно два катета. Указанное уравнение между
квадратом и прямоугольником лежит в основании второй дефиниции круга,
которая опять-таки есть Пифагорова теорема, поскольку катеты принимаются за
переменные величины; первое уравнение круга находится в таком же отношении
чувственной определенности к уравнению, в каком вообще находятся друг к
другу две различные дефиниции конических сечений.
Это истинно синтетическое движение вперед есть переход от
всеобщего к единичности, а именно к в себе и для себя определенному или к
единству предмета в самом себе, поскольку предмет распался на свои
существенные реальные определенности и был различен. Но в других науках
совершенно неполное, обычное движение вперед таково, что хотя в них и
начинают с чего-то всеобщего, однако его порознение и конкретизация есть
лишь применение всеобщего к привходящему извне материалу; собственно
|
|